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Abstract. In this paper a fuzzy behavior based decision control is pre-
sented. A behavior is described by one or more fuzzy controllers reacting
to external stimulus, and a state variable (denoted behavior activity)
measuring how evident are the conditions of application of the knowledge
coded in the fuzzy controllers. The autonomous vehicle decision control
is composed by several behaviors of this kind, each one feeding an arbi-
trator with the activity and action values. The arbitrator evaluates the
final action to send to the actuators taking into consideration each be-
havior activity and action values. Two arbitration methods are proposed.
Results of simulations are presented and conclusions are drawn.

Keywords: autonomous vehicles, Khepera, fuzzy controller, fuzzy be-
havior, fuzzy behavior arbitration.

1 Introduction

The domain of application of fuzzy control is now large. It can be applied in sit-
uations where smoothness of actuation is important (e.g. Anti-Block Breaking
Systems in automobiles), where it is difficult to express knowledge in an analyt-
ical way (high system complexity), where the variables domain are qualitative
in nature (e.g. water purification), etc. In all these situations the gains are: ro-
bustness (in the sense that the controller is applicable to situations not explicitly
declared), project efficiency (the rule base determination is less complicated than
the determination of some analytical model, e.g., high order differential equa-
tions), wide application domain (the generality of application of fuzzy contr
is now accepted) and “handiness” of thinking (the rule set partly implements@
divide-and-conquer problem resolution approach), among others.

All these issues are related to the control of autonomous vehicles at several
levels of design. The simpler one is piloting in environments with obstacles. In
fact, the rate of wheels curvature depends in a qualitatively way on the rate
and the angle of approach of the vehicle to some obstacle. As another example,
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the linear and differential velocity of some transportation vehicle depends on
the weight and shape of the load and how the objects are accommodated in the
vehicle. For some external observer and for both illustrative situations, it seems
that this is the humans modus faciendi. Informally, this last statement shows
the adequacy of fuzzy logic to guiding/driving control.

The control of an autonomous vehicle cannot be reduced to the guiding task
([3])- There are other modules that must be addressed, which can be quite com-
plex ([17], [7]). Let’s assume that the objectives of some vehicle are: to have a
wander behavior, and to have a self-looking-for-energy behavior. Consider also
that the energy source is somewhere near the walls. It can be associated a wall fol-
lowing behavior to the self-looking-for-energy behavior. The projected global be-
havior is as follows: the vehicle wanders when the energy level is “high” enough,
and starts looking for energy supply when needed, i.e. look for and follow walls
until it finds energy. The question is: is it possible to have a single fuzzy con-
troller taking care of everything? Set aside the operators (such as aggregation
and composition operators, defuzzification, etc.), the main component of a fuzzy
controller is the knowledge base, which is composed of rules. In a typical situa-
tion, all rules depend on the same input variables and influence the same output
variables; they are one of a kind. The input variables domain imposes differ-
ent contexts, and as so, some rules will have more importance on the outputs
than others. Even if one uses both positive (conditions to satisfy) and negative
knowledge (conditions that must not be satisfied), in practice such a centralized
controller will have such a dimension that it will be difficult to design, either in
terms of knowledge elicitation or performance tuning.

In fact, in the traditional approach to fuzzy control ([10],[11]), the controller
is made up of a knowledge base which is usually a monolithic computational
entity; it works like a mathematical function where one feeds the inputs and
receives the outputs. The controller design is finished as soon as there is some
kind of satisfaction about its performance. As so, it can be seen as an indivisible
entity, because there is no use for the discrete parts (the rules). This does not
imply that the knowledge base (or other parameters, e.g., membership functions)
could not be modified. This is indeed the case when there is the need to adjust
on-line the performance of the controller ([2],[16]). It happens in situations where
some parameters of the system change, and the controller has to be modified to
track the new behavior of the system.

The size of the controller depends heavily on the quantity (number of input
variables) and granularity (number of membership functions per variable) of the
inputs. Although the process of rule determination is modular, meaning that
when “thinking” in some rule one should not be too much concerned about the
others (one thinks in each rule separately), it is known that the expressive power
of fuzzy logic decreases with the increase in the knowledge base size.

Building a big centralized monolithic machine that has the capacity of doing
many things might not be the best way to address a difficult problem. On the
other hand, the decentralized (modular) way of thinking, or the bottom-up ap-
proach ([14]) advocated by artificial life, could facilitate the construction of such



a controller, leading to a behavior based architecture. So, “keep the knowledge
base modular” and “find a fuzzy controller for each behavior” (or module of the
application) can be seen as good heuristics for solving large problems through
fuzzy logic.

A new question then arises: how can simultaneous knowledge bases be artic-
ulated, each one showing some kind of competence different from each other?
This is the issue of the arbitration problem, which is central in behavior based
autonomous vehicles and also central in the study reported in this paper. In
concrete, the experience about controlling a Khepera mobile robot is presented
(see Fig. 1).

The organization of the document is as follows. In Sect. 2 some approaches to
the application of fuzzy logic in autonomous vehicles are referenced, pointing out
the connection to the work reported here, when applicable. In Sect. 3 the fuzzy
behavior thematic is introduced; mainly, the constitution of a fuzzy behavior is
presented. In Sect. 4 the integration of several fuzzy behaviors or the arbitration
problem is considered. In Sect. 5 the results of the conduced experiments are
presented. Finally, in Sect. 6 some conclusions are drawn and directions for
future research are pointed out.
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Fig. 1. Mobile robot Khepera with its eight infrared distance sensors (labeled from 0
to 7) and two motors

2 Relations to Other Works

Good references to start on fuzzy logic and to revisit still are [10] and [11].

An utilization of fuzzy control to the steering of a mobile vehicle can be found
in [3]. Other utilizations of fuzzy control in the classical sense, with a comparison
with neural control, for navigation of a mobile platform can be found in [8] and
[19].

Implementations of adaptive fuzzy control applied to motor control and to
navigation can be found in [2] and [16], respectively.

An implementation of distributed fuzzy control with applications to mobile
robotics can be found in [6], with more focus on physical distributedness of com-
putation rather than competence distributedness, as is favored here. Similarities



with this work can be found in [5] and [7]. Namely, the work reported in [5]
embraces a larger domain of application than the reported here. A combination
between two separated fuzzy controllers (one for each actuator) and non-fuzzy
controllers in a navigation system can be found in [9]. The major resemblance
is with the work of Saffiotti, Ruspini and Konolige, which can be appreciated
in several references, such as [1], [17] and [18]. This work extends into other
problems beyond navigation, as is task planning.

3 Fuzzy Behaviors

A behavior is considered here as the reaction of the vehicle in the presence of some
condition (environmental, in the typical situation). Why should fuzzy behaviors
be used? First of all the term fuzzy relates with the fuzzy logic scientific topic,
i.e. how the behaviors are implemented, and not to the behaviors itself. Fuzzy
logic is used for several reasons; among them are:

— a way to get a smooth reaction to the environment (the vehicle turns as it
gets closer to some obstacle);

— it is relatively easy to express the knowledge to do just that;

— an adequate representation for declaring knowledge which is:

e uncertain (the sensors do not deliver correct data due to obstacle color
and texture, functioning temperature dependency, etc.),

e incomplete (the information captured by sensors is local and not global,
due to environment scanning inside a tight 3-D cone), and

e approximate (if there is imprecision, then the data is of an approximate
nature only).

In spite of these attributes, there are not so many works in decision control
in autonomous vehicles using fuzzy logic as are without it. This may happen
because the main problems are the autonomy of the vehicle decision control and
its level of competence, and not only the trajectory smoothness, for instance.
However, the bigger the vehicle, the more concern should be put in the smooth-
ness of the trajectories, if one wishes to have a safe and good use of batteries
and not to break any electrical and mechanical part. In small vehicles there is no
inconvenience in using threshold values to switch from small velocities to higher
ones, to make tight bends or to stop suddenly; this is the case of the Khepera
mobile robot.

One should not mix the anticipation of a bend (smoothness in turning) with
fuzzy logic. This anticipation will be achieved if the sensor types and disposition
allows so. In the case of Khepera, the sensors are not very good concerning
correctness, range and linearity, but they are good enough for the goal at hand.

Fuzzy logic allows to have a smoothness in actuation, in the sense that no
matter the amount of stimulus, there is always a corresponding amount of actu-
ation. To this corresponds, most of the time, some degree of trajectory smooth-
ness. As a consequence, the sensibility of the reaction is higher with fuzzy logic.



3.1 Constitution of a Fuzzy Behavior

For the time being the simplest form of behavior representation is considered,
whose block diagram is illustrated on the left side of Fig. 2. It is similar to the
one proposed in [12]. The fuzzy controller (FC) has the ability to create action,
according to the designers intention. The knowledge declared in FC should code
some particular competence necessary to the performance of the vehicle; exam-
ples used in this work are: how to drive in the direction of light and how to avoid
left, right and front obstacles. FC receives input from the environment through
the sensors and creates action through the actuators. It is also possible to use
the notion of fuzzy state of the vehicle either as input or output variables.
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Fig. 2. Left: Behavior block diagram. Right: Shapes used in the experiments for the
state variable membership functions
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It is a special feature of the proposed approach that each behavior does not
depend on others, at least during the design process. In this sense, each behavior
knowledge base is determined only in terms of the type of (qualitative) response
the behavior shall produce for each (qualitative) environmental condition. When
constructing the rule base it should be clear for the designer what the vehicle
must do when the behavior being constructed is active.

The state variable block in the left side of Fig. 2 is composed by a fuzzy pred-
icate and the corresponding membership function whose intention is to measure
how evident are the conditions of application of the behavior action in the present
state of the environment, by returning a value belonging to the interval [0,1].
In other words, if it is considered that the behavior fuzzy controller codes some
competence or know-how, then the state variable measures the degree of mem-
bership of the environment state to the conditions of application of the fuzzy
controller. The environment conditions to satisfy are the ones that matter from
the point of view of the behavior competence. The block input could refer to
sensor values (reflecting the state of the environment) or to internal conditions
(reflecting the state of the vehicle). By measuring how important are some envi-
ronmental or internal conditions, the activity value is informing the final actuator
evaluation module (the arbitrator) for how much the action values supplied by
the behavior should be taken into account. It is up to the arbitrator to decide
taking in consideration the action and activity value delivered by each behavior.
Note that the state variable and FC do not influence each other.

It is also desired that the global conduct of the vehicle be dependent on some
condition. Assume that this condition is internal to the vehicle, like in the follow-



ing situation: as soon as the energy level drops below the energy threshold value,
the vehicle should look for energy. This is accomplished by knowing that the re-
charging station is somewhere near a wall; so the vehicle starts to follow walls as
soon as it finds one. It can be said that the vehicle’s global behavior shifted from
a wander behavior to a wall follow behavior. What does this situation have to
do with the fuzzy behavior proposed so far? The issue is that the vehicle should
consider left, right and front obstacles in a different way as it did before (when
it was wandering). So the fuzzy controllers in avoid-left-obstacles, avoid-right-
obstacles and avoid-front obstacles must be different. This is achieved by letting
more than one fuzzy controller reside inside the action module. Finally, there
is the need to switch between the several FC’s available. This kind of rotary
switch depends on some variable; in this case an internal state variable as it is
energy. The new block diagram of a fuzzy behavior with more than one way of
implementing its competence can be found in Fig. 3. It should be noted that the
capacity to choose the active fuzzy controller resides in the arbitration module
(the details will be presented in Sect. 4).
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Input Variables —
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Fig. 3. Block diagram of the extended behavior

3.2 A Fuzzy Behavior Example

An example of an avoid-front-obstacles behavior is considered. The fuzzy con-
troller is characterized by having two input variables (front-distance and differen-
ce-in-front-readings) and two output variables (left-motor and right-motor). Each
variable is defined by having three fuzzy terms, which are: far, medium and close
for input variable front-distance; negative, zero and positive for input variable
difference-in-sensor-readings; and forward, stop and backward for both left-motor
and right-motor output variables.

The membership functions of each fuzzy term associated to each input vari-
able are presented in parts a) and b) of Fig. 4 (observe that sensor values range
from 0 to 1023). The same happens in part ¢) in relation to the output vari-
ables (observe that motors should receive any integer value from -10 to 10). In
what respects the shape of the membership functions, they where adjusted by



hand in a way to compensate the non-linearity of the infrared distance sensors
in Khepera.
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Fig. 4. Membership function definitions: part a) far, medium and close for input vari-
able front-distance (note the log scale on the z-axis), part b) positive, zero and negative
for input variable difference-in-sensor-readings and, finally, part ¢) backward, stop and
forward for output variables left-motor and right-motor

The crisp input values are evaluated from the values of sensors ‘2’ and ‘3’
(recall Fig. 1) using expressions 1 and 2. In the case of Khepera, the two front
sensors are parallel, and lower sensor values represent longer distances. So when
there is the need to know the front distance it is safer to take the maximum of
both front sensors. Also, the right side of expression 2 is a simple way to have a
measure of the approach angle to an obstacle.

vaist = maz(sensor(2], sensor[3]) . (1)
vair = sensor[2] — sensor(3] . (2)

The activity value is a function of sensors ‘2’ and ‘3’ because these are the only
ones pointing to the front. The activity is evaluated by applying the returned
value from equation 1 to a sigmoide like expression, which returns a value in the
[0,1] interval. This function is labeled sigmoide in the right side of Fig. 2. Thus
the satisfaction of every predicate is measured in each iteration step.

Finally, the knowledge base is represented in tabular form in Fig. 5. As an
example of how to read the table, consider the rule in the top-left rectangle: “if
distance is far and difference-in-sensor-readings is negative, then left-motor is
forward and right-motor is forward” .

4 Fuzzy Behavior Arbitration

Behavior arbitration is a central topic in autonomous vehicles, but the corre-
sponding in fuzzy logic, which can be called as controller arbitration, is not so
common. The question behind arbitration is how to decide when there are several
actions that can be performed.

In the non-fuzzy approach to behavior arbitration (the crisp way), the switch-
ing process depends on some threshold values, which means that the vehicle tends
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Fig. 5. Knowledge base for avoid-front-obstacles fuzzy controller, where F', S and B
represent forward, stop and backward, respectively; the subscript I denotes left and r
denotes right

to react the same way in some subset of input conditions. In a sense, the thresh-
old values voids the richness of the environment, meaning that the increasing
evidence of some environmental feature is neglected until it is considered to be
strong enough. This is where fuzzy logic is considered.

What is fuzzy behavior arbitration? It is considered as a way to decide what
the actuators shall receive taking into account the action and the relative impor-
tance of each behavior (the activity value presented earlier), and because these
values carry no information about the outcome of each action (namely some
contradictory actions could be sent to the arbitrator), some internal state of the
vehicle is also considered in the decision process. This is a (too much) global
definition that will be clarified in a short notice. In the time frame of this work,
two methods of behavior arbitration were evaluated: “weight” and “max”, which
are in essence defuzzification operators. These are addressed shortly. The effect
of the vehicle’s internal state will be considered in Sub-sects. 4.2 and 4.3 and
also in Sect. 5.

4.1 Two Arbitration Methods

A kind of defuzzification process is used in two different ways, whose expressions
can be formulated as follows: let N denote the number of behaviors, M7 denote
the j-th motor (j=left, right), S; be the value of the i-th behavior state variable
and A? be the i-th behavior action for M7, then:

— Arbitration by Weight

N
5N Al

M B ign 3)

Zi:l Si

— Arbitration by Max
M) =AY: S = max S;, j = left, right . (4)

The intuitive arguments behind each mode are the ones used for the de-
fuzzification methods in fuzzy logic ([11]). In the first case, it is considered that
every behavior is important, and so they must be considered in the actuators



final value. In the last case, it is given total importance to the behavior showing
maximum activity, as some research work based on ethology seems to consider
([20], [13] and [15] are some examples). The results of both evaluation methods
are presented in Sect. 5.

4.2 Behavior Inhibition

As soon the behavior activity value is different from zero, it can be said that
the behavior is active. Depending on the arbitration method, this behavior ac-
tivity could influence how the arbitrator commands the actuators. Apart from
these two facts, nothing has been said about the number of behaviors that are
permitted to be active independently of their activity values. In other words,
a situation in which there is the need to disregard some behavior could exist.
Take the following example. The vehicle should look for a re-charging station
(simulated by a light) when the level of energy drops below some predetermined
value. The presence of light should be taken in consideration in case the vehicle
needs to re-charge, and should be disregarded otherwise. This kind of conduct is
achieved by letting the arbitration module to impose a zero on the look-for-light
behavior activity value (in the case it does not need to re-charge), or to consider
the activity value in the actuator evaluation (otherwise).

4.3 Behavior Incompatibility

When more than one behavior with the same intention or purpose exists, there
is the need to decide which behavior is allowed to influence the actuators, be-
cause there must be exclusivity in the decision. The same argument holds for
fuzzy controller switching inside a behavior, because this implements the same
competence in different ways; and as so they are incompatible or could be contra-
dictory. In the present approach and as mentioned before, there must be a state
variable upon which to ground the decision to choose another fuzzy controller.
In the illustrative example that has been used in the explanations, this state
variable is energy; namely, when the available energy is below some threshold
value the piloting mode is to follow walls, as opposed to wander which is the
mode when the available energy is high enough.

5 Experiments and Results

Lets make a short recall of the experiment. Khepera wanders until it falls short
of energy. As soon this happens, it looks for walls, because it is known that
these are the re-charging station probable locations. When it finds one, it stops
for a while (simulating re-charging time) and resumes movement in a different
direction than before (selected randomly).

There are four fuzzy behaviors: 1) avoid-left-obstacles, 2) avoid-front-obsta-
cles, 3) avoid-right-obstacles and 4) look-for-energy. Behavior 1 input is con-



nected to sensors 0, 1 and 2! of Khepera (recall Fig. 1), behavior 2 input is
connected to sensors 2 and 3 (according to expressions 1 and 2), behavior 3
input is connected to sensors 3, 4 and 5, and behavior 4 input is connected to
sensors 1, 2, 3 and 4.

Behaviors 1, 2 and 3 have two fuzzy controllers in the FC block: one allowing
wandering behavior and the other allowing wall following behavior. In each case,
the state variable membership function used is the one labeled “sigmoide” in
Fig. 2. In the case of look-for-energy behavior, the state variable membership
function is the one labeled “light-sigmoide”.

Each fuzzy variable is defined by three fuzzy terms, with the output fuzzy
variables of wall following mode being the exception: there are four fuzzy terms
in left-motor and right-motor variables. Since it is not easy to manually tune
fuzzy models, the use of four fuzzy terms per variable was a simple way to make
Khepera contour the obstacles. Concerning the fuzzy controller definition, the
following operators were used: aggregation by min, composition by max and
defuzzification by centroid.

Energy drops linearly with time from the maximum value (MaxEnergy) to
‘0’. Note that pu(MaxEnergy) = 1 and u(0) = 0 for the energy state variable
membership function. The threshold value to switch between wandering and
following piloting modes is p(energy) = 0.2; which is an experimental value
giving Khepera enough time to find the light source before the energy fades way.

Two kinds of experiments are presented: one where the behavior arbitration
is made by “weight” and the other where the “max” method is used. The results
of the simulation are presented in Figs. 6 and 7. The environment is composed by
walls and by one light source representing the re-charging station (denoted by the
symbol ‘L’). The legend is as follows: the symbol ‘+’ denotes walls, light lines
represent trajectories where the vehicle is wandering and dark lines represent
trajectories where the vehicle is following walls. Figure 7 illustrates the trajectory
broken in a eight figure set for sake of clarity; it should be observed from left to
right and top to bottom. There is an arrow showing the starting point and the
heading of Khepera. The starting behavior is wander. Note that the lines denote
the trajectory of the center of the robot, which means that it approaches more
the walls than the impression given by the figures.

As a first observation, note that in the left side of Fig. 6 Khepera misses the
presence of the light source because the evidence of light is always less than the
evidence of a wall by its right side (this fact is asserted in the right side of Fig. 6,
where the activity values for both behaviors are shown). In a real dependency of
energy, the khepera would “die”. It must be said that this is not always the case.
If the distance to the wall increases by a small amount then it could be enough
for the evidence of light to increase and the evidence of the wall to decrease,
having as result Khepera finding the light source. Note that this could happen
because the Khepera distance sensors are nonlinear and noisy; as a consequence

! It could be argued that sensor ‘2’ is not on the left side of the vehicle, and as so it
should not make part of behavior 1. This is partly true. The fact is that the presence
of sensor ‘2’ is most help-full in realizing the contour (left) obstacles mode.
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Fig. 6. Left: Simulated trajectory resulting from the “max” arbitration. Right: State
variable values in wall following mode for fuzzy behaviors avoid-right-wall and look-
for-light, near the vicinity of the light

the trajectories are not always equal. This is only a local proof and not a general
demonstration of the inadequacy of the “max” arbitration method. However,
this fact shows a drawback of this method when in comparison to arbitration by
“weight” (in Fig. 6 the light position is the same as in Fig. 7).

As a second experiment, the “max” method is used and the light source is
moved closer to the wall, as is illustrated in Fig. 8. Now an informal compar-
ison can be made between both arbitration methods. This comparison is not
straightforward, however, since the system shows dependence on initial condi-
tions. Notwithstanding, it is observable that in the “weight” method walls act
as more repulsive obstacles to the vehicle than what results from the “max”
method, i.e., the vehicle spends more time turning. In fact, the amount of time
that each behavior is influencing the actuators is larger in the “weight” method.
Additionally, the “weight” method shows a better performance when guiding in
corridors because it tends to cancel trajectory oscillations. Because this effect is
not very clear in Figs. 7 and 8, the result of an experiment where the vehicle
travels in a small corridor is provided in Fig. 9. It should be stressed that the
knowledge bases used in each behavior are not changed from one arbitration
method to another (i.e., from Fig. 7 to Fig. 8), which is an important feature of
the proposed method.

6 Conclusion

This papers reports a work on autonomous vehicles, where piloting is accom-
plished with fuzzy logic. Our main motivation was to conclude over the adequacy
of fuzzy logic to support a behavior based approach to autonomous vehicle pi-
loting. Each behavior is composed by an action module, implemented by at least
one fuzzy controller, and an activity value which is (for now) implemented by a
membership function, supported on the environment state.

Each behavior is connected to the arbitrator and there is no hierarchy among
behaviors. The arbitrator role is to create action from the action and activity val-
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Fig. 9. Simulated piloting in a corridor with arbitration by “weight” and by “max”,
where the arrow indicates the starting point and the initial direction of the movement

ues supplied by each behavior. Two ways for realizing arbitration were proposed,
which in essence are defuzzification methods: “weight” and “max”.

Results of simulation experiments were presented, where the adequacy of the
proposed approach to the piloting task was shown.

Not much attention was purposely given to find how optimal are the knowl-
edge bases of the presented fuzzy controllers. This constitutes an important point
for performance tuning, and as so it should be addressed, for instance with a
genetic algorithm ([4]).

The arbitration problem is also a challenge, and as so it deserves future
efforts.

Other open issues worthing future research are: i) creation of other useful be-
haviors as are piloting in tight corridors, piloting in agglomerated or overcrowded
areas; ii) creation of monitoring behaviors with the capability of avoiding stag-
nation or trajectory pattern repetition, as happens when the vehicle contours an
isolated obstacle; iii) architecture extensibility to many behaviors; iv) map build-
ing with the intent to know the re-charging station location; and v) development
of strategies for performance measuring of long range autonomy.
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